

Summary of Machine Learning Applications for the COHERENT Collaboration

Peibo An

Duke University

Overview

1. COHERENT

Intro, research interests, some results

2. ML applications on individual detectors

- Neutrino Cubes (Dr. J. Daughhetee: jdaughhe@utk.edu)
- CENNS-10 (Dr. J. Daughhetee)
- NalvE 185 (Peibo An: pa77@duke.edu)

3. Conclusion

The COHERENT Collaboration

OAK RIDGE National Laboratory

SOUTH DAKOTA

- 21 institutions from 4 countries
- Uses SNS at ORNL as neutrino source
- Studies coherent elastic vnucleus scattering (CEvNS) and inelastic neutrino interactions

Duke

CEVNS Efforts around the world

Coherent Elastic v–Nucleus Scattering

$$\sigma_{tot} = \frac{G_F^2 E_{\nu}^2}{4\pi} \Big[Z \Big(1 - 4\sin^2 \theta_W \Big) - N \Big]^2 F^2(Q^2)$$

- Predicted by D. Freedman in 1974 [1]
- Largest of all SM neutrino cross-sections at 1-100 MeV scale
- Low energy nuclear recoils
- Sensitive Standard Model Probe
- Applications: Dark Matter Experiments,
 Supernovae, Monitoring

u_e charged-current interactions on $^{127} extbf{I}$

$$v_e + {}^{127}I \rightarrow {}^{127}Xe * + e^-$$

- * indicates that ¹²⁷Xe can be in excited states. Deexcitations could produce protons, neutrons, gamma rays and alpha particles.
- The cross section[2]:

$$\sigma = \frac{g_A^2}{\pi c^3 h^4} \int_0^{E_V - Q} P_e E_e F(Z, E_e) S_{\beta}(E') dE'$$

• g_A is the axial vector coupling constant, whose quenching affects the rate of $\beta\beta 0\nu$ decay.

COHERENT at the SNS

 Made a successful observation of CEvNS for the first time using a 14.6 kg CsI[Tl] scintillator and published this result in the journal Science in 2017[2].

- Observation to precision.
- Multiple detectors deployed.

[2] Observation of Coherent Elastic Neutrino-Nucleus Scattering, D. Akimov et al. (COHERENT), Science (2017). 1708.01294.

The bottom right figure from: [3] COHERENT Proposal 2018

Neutrino Cubes

(CC)
$$v_e + {}^{208}Pb \rightarrow {}^{208}Bi^* + e^ {}^{208-y}Bi + x\gamma + yn$$

(NC)
$$v_x + {}^{208}Pb \rightarrow {}^{208}Pb^* + v'_x$$
 ${}^{208-y}Pb + x\gamma + yn$

Boosted Decision Trees for Event Discrimination

- Detectors searching for neutrino-induced neutrons; a potential CEvNS background.
- Excited nuclei in target material (Fe, Pb) can emit neutrons which can produce nuclear recoil events in embedded detectors.
- NIN process yet to be observed; relevant to SNe nucleosynthesis and as SNe detection channel (HALO).

BDT for ER/NR classification shows some improvement at lower energies for some detector cells. Necessary for lowering recoil energy threshold.

Duke

CENNS-10

- Loaned from J. Yoo et al from Fermilab.
- Single-phase liquid Ar scintillation detector located 28 m from SNS target (\sim 2 x 10⁷ v / s)
- First Production Run: July 2017 -> December 2018
 - Dramatically improved light yield results in lower threshold (20 keVnr)
 - 2x 8" Hamamatsu PMTs with 18% eff @ 400 nm
 - Tetraphenyl butadiene (TPB) wavelength shifter coating Teflon walls and PMT glass.
 - 24 kg fiducial volume. arXiv:2003.10630

Use of PoT signal from SNS greatly reduces steady-state backgrounds. BUT 1 Hz/kg of ³⁹Ar events still a large background:

backgrounds, bot i rizhkg of the events still a large backg		
Data Events	3752	
Fit CEvNS	$159 \pm 43 \text{ (stat.)} \pm 14 \text{ (syst.)}$	
Fit Beam Related Neutrons	553 ± 34	
Fit Beam Unrelated Background	3131 ± 23	
Fit Late Beam Related Neutrons	10 ± 11	
$2\Delta(-lnL)$	15.0	
Null Rejection Significance	$3.5\sigma \text{ (stat. + syst.)}$	

Total PEs vs F90

Duke

Training 2D (1D) CNN

Waveforms

Time-tagged DT data makes for an excellent source of NR waveforms with little accidentally contamination form ER band.

Initial results look promising for maintaining discrimination at

low energies (can lead to lower threshold -> better sensitivity).

Energy-dependent reconstruction efficiency estimated for CEvNS events to pass the data selection criteria for each of the two analyses.

Training History (1D, 2D)

ER

NR

Recurrence Plot (2D)

Nal**vE** 185

- Consists of twenty-four 7.7 kg NaI[TI] scintillating detectors, 1.5-inch thick steel shields (white) and 2-inch thick muon vetoes (green).
- Deployed at the SNS, about 20~21 m from the target.
- Goal: measure inclusive $v_e^{-127} \mathrm{I}\left(\mathbf{p},\mathbf{n}\right)^{127} \mathrm{Xe}$ cross-section
- Dominant Bgs: steady-state muons

Simulation production

Convolutional Neural Network

- A convolutional neural network (CNN) takes in images with categorical labels and outputs labels
- Input: event energy displays of simulated events

Output: labels of particles

Understanding the performance

- Testset made of 200 cc sim, 1950 muon sim and 50 neutron sim
- About 77% of cc sim are labeled as cc correctly
- About 22% of muon sim are labeled as cc incorrectly

	Signal sim left	Bg sim left
CNN	77%	22%
Cut1 (mul >3)	33.56%	5.28%

Duke

Conclusion

• The COHERENT Collaboration has tested/used ML on multiple detectors.

• The results are preliminary, but very promising.

The developed ML approaches can be generalized to other detector

setups.

